DEEP LEARNING

Lecture 5：Basics of Convolutional Neural Networks

Dr．Yang Lu
Department of Computer Science and Technology
luyang＠xmu．edu．cn

CNN Applications

Image classification

Image retrieval

CNN Applications

Image Recognition

Object Detection

Semantic Segmentation

Instance Segmentation

CNN Applications

Pose estimation

Real－time Atari game play

CNN Applications

A group of young people playing a game of frisbee．

A herd of elephants walking across a dry grass field．

Two hockey players are

A close up of a cat laying

Describes with minor errors

A little girl in a pink hat is

A red motorcycle parked on the

Somewhat related to the image

A dog is jumping to catch a

A refrigerator filled with lots of

A yellow school bus parked A yellow school bus pa

Image captioning

（i．）厦門大學信息学院（特色化示范性软件学院）

CNN Applications

CNN Applications

Image super－resolution

CNN Applications

CNN Applications

Convolutional Neural Networks

－Recall in Lecture 2，we vectorize an image as the input of a neural network．
－What is the problem here？

（ic）原門大學信息学院（特色化示范性软件学院）

Convolutional Neural Networks

－Convolutional neural networks（CNNs）are simply neural networks that use convolution in place of general matrix multiplication in at least one of their layers．
－Use the non－vectorized image as input with a 2D weight，which are called a filter or a kernel．
－We call the hidden outputs in CNNs feature map．

Convolutional Neural Networks

－The operation＊between the input image I and filter K to produce a new image S is called convolution，which is defined as：

$$
\begin{aligned}
& \qquad S[i, j]=(I * K)[i, j]=\sum_{m} \sum_{n} I[i+m, j+n] K[m, n] \\
& \text { weight } W \text {, output } \boldsymbol{h} \text {. }
\end{aligned}
$$

－MLP：input \boldsymbol{x} ，weight W ，output \boldsymbol{h} ．
－CNN：input I ，weight K ，output S ．

Output（feature map）

Convolution

Input： 3×3

1	2	3
4	5	6
7	8	9

Filter： 2×2

10	20
30	40

Output： 2×2

$$
1 \times 10+2 \times 20+4 \times 30+5 \times 40=370
$$

Convolution

Input： 3×3

1	2	3
4	5	6
7	8	9

Filter： 2×2

10	20
30	40

Output： 2×2

$$
2 \times 10+3 \times 20+5 \times 30+6 \times 40=470
$$

Convolution

Input： 3×3

（i9．厦門大學信息学院（特色化示范性软件学院）

Convolution

Input： 3×3

1	2	3
4	5	6
7	8	9

Filter： 2×2

Output： 2×2

370	470
670	770

Now the problem：the size of the new image after convolution is shrunk．

$$
5 \times 10+6 \times 20+8 \times 30+9 \times 40=770
$$

Padding

－In order to keep the dimension of input and output matrix the same，we add padding． Input： $3 \times 3+1 \times 1$ padding

0	0	0	0	0
0	1	2	3	0
0	4	5	6	0
0	7	8	9	0
0	0	0	0	0

Filter： 3×3

10	20	30
40	50	60
30	20	10

Padding

－In order to keep the dimension of input and output matrix the same，we add padding． Input： $3 \times 3+1 \times 1$ padding

0	0	0	0	0
0	1	2	3	0
0	4	5	6	0
0	7	8	9	0
0	0	0	0	0

Filter： 3×3

10	20	30
40	50	60
30	20	10

Output： 3×3

300	600	

Padding

－In order to keep the dimension of input and output matrix the same，we add padding． Input： $3 \times 3+1 \times 1$ padding

0	0	0	0	0
0	1	2	3	0
0	4	5	6	0
0	7	8	9	0
0	0	0	0	0

Filter： 3×3

Stride

－Stride：skip a location of image．
Input： $3 \times 3+1 \times 1$ padding

0	0	0	0	0
0	1	2	3	0
0	4	5	6	0
0	7	8	9	0
0	0	0	0	0

Filter： 3×3

10	20	30
40	50	60
30	20	10

Stride： 2×2

Stride

－Stride：skip a location of image． Input： $3 \times 3+1 \times 1$ padding

0	0	0	0	0
0	1	2	3	0
0	4	5	6	0
0	7	8	9	0
0	0	0	0	0

Filter： 3×3

10	20	30
40	50	60
30	20	10

Stride： 2×2

Output Size

－Input size：$n_{h} \times n_{w}$ ；filter size：$k_{h} \times k_{w}$ ；padding size：$p_{h} \times p_{w}$ ，stride size： $s_{h} \times s_{w}$ ．
－Output size：

$$
\left[\frac{n_{h}+2 p_{h}-k_{h}}{s_{h}}+1\right] \times\left\lfloor\frac{n_{w}+2 p_{w}-k_{w}}{s_{w}}+1\right\rfloor
$$

－For example：
－Input size 3×3 ，filter size 3×3 ，padding size 1×1 ，stride size 2×2 ．
－Output size $\left\lfloor\frac{3+2-3}{2}+1\right\rfloor \times\left\lfloor\frac{3+2-3}{2}+1\right\rfloor=2 \times 2$ ．

Channel and Depth

－The depth of the filter is same as the channel of the input image．
－For an RGB image，we have three channels：red，green and blue．

Channel and Depth

－The depth of the feature map is a hyperparameter．
－It corresponds to the number of filters we would like to use，each learning to look for something different in the input．

Output Size with Depth

－Input size：$n_{h} \times n_{w} \times c_{\text {in }}$ ；filter size：$k_{h} \times k_{w} \times c_{\text {in }}$ ；filter number：$c_{\text {out }}$ ， padding size：$p_{h} \times p_{w}$ ，stride size：$s_{h} \times s_{w}$ ．
－Output size：

$$
\left[\frac{n_{h}+2 p_{h}-k_{h}}{s_{h}}+1\right] \times\left[\frac{n_{w}+2 p_{w}-k_{w}}{s_{w}}+1\right] \times c_{\text {out }}
$$

－For example：
－Input size $5 \times 5 \times 3$ ，filters size $3 \times 3 \times 3$ ，filter number 5 ，padding size 1×1 ，stride size 2×2 ．
－Output size $\left[\frac{5+2-3}{2}+1\right] \times\left[\frac{5+2-3}{2}+1\right] \times 5=3 \times 3 \times 5$ ．

Channel and Depth

－Every layer of a CNN transforms the 3D input volume to a 3D output volume of neuron activations．

Sparse Connectivity

Fully connected network：h_{3} is computed by full matrix multiplication with no sparse connectivity．

Kernel of size 3，moved with stride of 1．h_{3} only depends on

$$
x_{2}, x_{3}, x_{4} .
$$

Sparse Connectivity

- Input: $55 \times 55 \times 3$, output: $55 \times 55 \times 96$.
-If we adopt a fully connected layer, the number of parameters for one single layer is:

$$
(55 \times 55 \times 3+1) \times 55 \times 55 \times 96=2,635,670,400
$$

- Now, if we use 9611×11 filters with 5×5 padding and 1×1 stride.
- We can reduce the number of parameters to

$$
(11 \times 11 \times 3+1) \times 55 \times 55 \times 96=105,705,600
$$

- It is still unacceptable.

Parameter Sharing

－We can dramatically reduce the number of parameters by making one reasonable assumption：

```
If one filter is useful to compute at some spatial position \(\left(x_{1}, y_{1}\right)\) ，it should also be useful to compute at a different position \(\left(x_{2}, y_{2}\right)\) ．
```

－We are going to constrain the neurons in each channel to use the same weights and bias．

Parameter Sharing

0	0	0	0	0				
0	1	2	3	0				
0	4	5	6	0				
0	7	8	9	0				
0	0	0	0	0	\quad	10	20	30
:---	:---	:---						
40	50	60						
30	20	10						

A filter is fixed for all pixel positions in a channel

（i）厦門大學信夏学院（特色化示范性软件学院）

Parameter Sharing

－Rather than learning a separate set of filter parameters for every location during convolution，we learn only one set．
－This does not affect the runtime of forward propagation，but it does further reduce the storage requirements．
－In the previous example，the number of parameters are reduced to

$$
96 \times(3 \times 11 \times 11+1)=34,944
$$

－ 3000 times smaller than the non－sharing one．
－75，400 times smaller than the fully connected one．

In$\times[$0	V	lun	(+	pad)	7x3)	Filter W0 (3x3x3) w0 [:, :, 0]			$\begin{aligned} & \text { Filter W1 (3x3x3) } \\ & \text { w1 [:, :, 0] } \end{aligned}$			$\begin{aligned} & \text { Output Volume (3x3x2) } \\ & o[:,:, 0] \end{aligned}$								
	x[:, :, 0]																				
	0	0	0	0	0	0	-1	-1	-1	-1	0	-1		0	-5						
0	2	0	2	1	2	0	1	0	-1		0	-1		-6	-10						
0	2	1	1	2	2	0	0	0	1		-1	1	-2	-4	-5						
0	0	2	0	0	1	0	w0 [:, : , 1]			w1[:, :, 1]			o[:, : , 1]								
0	2	0	1	0	2	0	-1	1	1		-1	0	0	4	2						
0	2	0	0	0		0	-1	-1	1		1	0	-4	-2	-4						
0	0		0	0	0		-1		0		1	-1	0	-2	0						
$x[2,1,1]$ w0 [:, , , 2]										w1 [:, : , 2]											
0	0	0	-	0	0	0			0		-1	0									
0	0	2		1	0		0	1	0		1	1									
0	O	0	,		0				0		-1	1									
0	1	1	2	1					(1x1x1)	Bias	b1	1x1x1)									
0	1	1			0			:,	, 0]		:,	, 0]									
0	1	2	2	2						0											
0		0	0																		
	0	$\begin{aligned} & 2] \\ & 0 \end{aligned}$)	0	0							toggle	ment								
0	1	2	2	0	2	0															
0	2	0	2	2	0	0	What are the Iearnable														
0	1	1	0	0	2	0															
0	2	2	2	2	0	0	parameters in CNNs?														
0	2	0	1	0	2	0															
0	0	0	0	0	0	0															

Parameter Sharing

－Each of the 96 learned filters is of size $11 \times 11 \times 3$ ．
－If detecting a horizontal edge is important at some location in the image，it should intuitively be useful at some other location．
－No need to relearn to detect a horizontal edge at every one of the 55×55 distinct locations in

Compare with the famous Sobel filter for edge detection：	x－Direction Kernel			Y－Direction Kernel		
	－1	0	1	－1	－2	－1
	－2	0	2	0	0	0
	-1	0	1	1	2	1

Parameter Sharing

－Parameter sharing is not only for reducing the number of parameters．
－It can also be treated as a regularized method for preventing overfitting．
－It forces the filters to learn some common patterns over the whole image，rather than some patterns specific at some positions．

CNNs vs．Traditional Methods

Object recognition 2006－2012

State of the art object recognition using CNNs

CNNs vs．Traditional Methods

Object recognition 2006－2012

High－level feature contains semantic information， indicating if this image has certain components or not．

Receptive Field

－The receptive field is defined as the size of the region in the input that produces the feature．
－It is a measure of association of an output feature to the input region．
－Increasing model depth is a straightforward way to increase receptive field．
－Is there any other way to increase the receptive field？

Dilated Convolution

－As an alternative，dilated convolution allows to merge spatial information across the inputs much more aggressively with fewer layers．

Standard Convolution（ $d=1$ ）

Dilated Convolution（ $d=2$ ）
（国厦門大學信夏学院（特色化示范性软件学院）

Output Size with Dilated Convolution

－Input size：$n_{h} \times n_{w} \times c_{\text {in }}$ ；filter size：$k_{h} \times k_{w} \times c_{\text {in }}$ ；filter number：$c_{\text {out }}$ ；padding size：$p_{h} \times p_{w}$ ，stride size：$s_{h} \times s_{w}$ ；dilation size：$d_{h} \times d_{w}$ ．
－Output size：

$$
\left[\frac{n_{h}+2 p_{h}-\left(d_{h} \times k_{h}-1\right)-1}{s_{h}}+1\right] \times\left[\frac{n_{w}+2 p_{w}-\left(d_{w} \times k_{w}-1\right)-1}{s_{w}}+1\right]
$$

－For example：
－Input size $11 \times 11 \times 3$ ，filter size $3 \times 3 \times 3$ ，padding size 1×1 ，stride size 2×2 ， dilation size 2×2 ．
－Output size $\left[\frac{11+2-(2 \times 3-1)-1}{2}+1\right] \times\left[\frac{11+2-(2 \times 3-1)-1}{2}+1\right] \times 3=4 \times 4 \times 3$ ．

1D and 3D CNNs

－For image data，we are actually using 2D CNN．
－It means the input data and the filter are both 2－ dimentional．

1D and 3D CNNs

－For 1D data like signal or time－series data，we can adopt 1D CNN with 1D filter．
－It is just a sparse and parameter－shared version of MLP．

1D and 3D CNNs

－For 3D data like hyperspectral images，medical images，or videos， we can generalize 2D CNNs to 3D．

（ii）原門大學信息学院（特色化示范性软件学院）

Deformable Convolutional Networks

－One problem of CNNs：the shape of filters is fixed（e．g．square－like），but the shape of objects is variant．

（a）

（b）

（c）

（d）
－（a）regular sampling grid（green points）of standard convolution．
－（b）deformed sampling locations（dark blue points）with augmented offsets（light blue arrows）in deformable convolution．
－（c）（d）are special cases of（b）．

Deformable Convolutional Networks

Convolutional Layer in PyTorch

Docs＞torch．nn＞Conv2d

CONV2D \mathfrak{O}

CLASS torch．nn．Conv2d（in＿channels：int，out＿channels：int，kernel＿size：Union［T， Tuple［T，T］］，stride：Union［T，Tuple［T，T］］＝1，padding：Union［T，Tuple［T， $T]$ ］ 0 ，dilation：Union［T，Tuple［T，T］］＝1，groups：int＝1，bias：bool＝ ［SOURCE］ True，padding＿mode：str＝＇zeros＇）

Applies a 2D convolution over an input signal composed of several input planes．
In the simplest case，the output value of the layer with input size $\left(\mathrm{N}, \mathrm{C}_{\mathrm{in}}, \mathrm{H}, \mathrm{W}\right)$ and output （ $\mathrm{N}, \mathrm{C}_{\text {out }}, \mathrm{H}_{\text {out }}, \mathrm{W}_{\text {out }}$ ）can be precisely described as：

$$
\operatorname{out}\left(\mathrm{N}_{\mathrm{i}}, \mathrm{C}_{\text {out }_{\mathrm{j}}}\right)=\operatorname{bias}\left(\mathrm{C}_{\text {out }_{\mathrm{j}}}\right)+\sum_{\mathrm{k}=0}^{\mathrm{C}_{\text {in }}-1} \operatorname{weight}\left(\mathrm{C}_{\text {out }_{\mathrm{j}}}, \mathrm{k}\right) \star \operatorname{input}\left(\mathrm{N}_{\mathrm{i}}, \mathbf{k}\right)
$$

where \star is the valid 2D cross－correlation operator， N is a batch size， C denotes a number of channels， H is a height of input planes in pixels，and W is width in pixels．

Parameters

－in＿channels（int）－Number of channels in the input image
－out＿channels（int）－Number of channels produced by the convolution
－kernel＿size（int or tuple）－Size of the convolving kernel
－stride（int or tuple，optional）－Stride of the convolution． Default： 1
－padding（int or tuple，optional）－Zero－padding added to both sides of the input．Default： 0
－padding＿mode（string，optional）－＇zeros＇，＇reflect＇ ＇replicate＇or＇circular＇．Default：＇zeros＇
－dilation（int or tuple，optional）－Spacing between kernel elements．Default： 1
－groups（int，optional）－Number of blocked connections from input channels to output channels．Default： 1
－bias（bool，optiona）－If True，adds a learnable bias to the output．Default：True

```
import torch
rand_input = torch.randn(20, 16, 50, 100)
# With square kernels and equal stride
m = torch.nn.Conv2d(16, 33, 3, stride=2)
output = m(rand_input)
print(output.shape)
torch.Size([20, 33, 24, 49])
# non-square kernels and unequal stride and with padding
m = torch.nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
output = m(rand_input)
print(output.shape)
torch.Size([20, 33, 28, 100])
# non-square kernels and unequal stride and with padding and dilation
m = torch.nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
output = m(rand_input)
print(output.shape)
torch.Size([20, 33, 26, 100])
```


Convolutional Layer in TensorFlow

```
tf.keras.layers.Conv2D(
    filters, kernel_size, strides=(1, 1), padding='valid', data_format=None,
    dilation_rate=(1, 1), groups=1, activation=None, use_bias=True,
    kernel_initializer='glorot_uniform', bias_initializer='zeros',
    kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
    kernel_constraint=None, bias_constraint=None, **kwargs
```

Arguments	Integer，the dimensionality of the output space（i．e．the number of output filters in the convolution）．
filters	An integer or tuple／list of 2 integers，specifying the height and width of the 2D convolution window． Can be a single integer to specify the same value for all spatial dimensions．
kernel＿size	An integer or tuple／list of 2 integers，specifying the strides of the convolution along the height and width．Can be a single integer to specify the same value for all spatial dimensions．Specifying any stride value ！$=1$ is incompatible with specifying any dilation＿rate value ！$=1$.
strides	one of＂valid＂or＂same＂（case－insensitive）．

```
import tensorflow as tf
rand_input = tf.random.normal([20, 50, 100, 16])
# With square kernels and equal stride
m = tf.keras.layers.Conv2D(33, 3, strides=2)
output = m(rand_input)
print(output.shape)
(20, 24, 49, 33)
# non-square kernels and unequal stride and with padding
p = tf.keras.layers.zeroPadding2D((4, 2))
m = tf.keras.layers.Conv2D(33, (3, 5), strides=(2, 1))
output = m(p(rand_input))
print(output.shape)
(20, 28, 100, 33)
                                    stride>1 is incompatible
with dilation_rate >1
# non-square kernels and equal stride and with padding and dilation
p = tf.keras.layers.zeroPadding2D((4, 2))
m = tf.keras.layers.Conv2D(33, (3, 5), strides=(1, 1), dilation_rate=(3, 1))
output = m(p(rand_input))
print(output.shape)
(20, 52, 100, 33)
Special padding size can't
) \(\longleftarrow\) be assigned in conv2d stride \(>1\) is incompatible with dilation_rate \(>1\)
\# non-square kernels and equal stride and with padding and dilation
\(\mathrm{p}=\) tf.keras.layers.zeroPadding2D((4, 2))
\(m=t f . k e r a s . l a y e r s . \operatorname{Conv2D}(33,(3,5), \operatorname{strides}=(1,1)\), dilation_rate=(3, 1)) output = m(p(rand_input))
print(output.shape)
\((20,52,100,33)\)

\section*{Pooling}

－Pooling layer downsamples the volume spatially，independently in each channel of the input volume．

\section*{Pooling}
－On one hand， pooling increases the receptive field．
－On the one hand， pooling introduces invariance．


The max pooling unit then has a large activation regardless of which detector unit was activated．

\section*{Pooling Layer in PyTorch}

\section*{Docs＞torch．nn＞MaxPool2d}

\section*{MAXPOOL2D}

\section*{CLASS torch．nn．MaxPool2d（kernel＿size：Union［T，Tuple［T，．．．］］，stride} Optional［Union［T，Tuple［T，．．．］］］＝None，padding：Union［T，Tuple［T，．．．］］＝ 0，dilation：Union［T，Tuple［T，．．．］］＝1，return＿indices：bool＝False， ceil＿mode：bool＝False）

Applies a 2D max pooling over an input signal composed of several input planes．
In the simplest case，the output value of the layer with input size \((\mathrm{N}, \mathrm{C}, \mathrm{H}, \mathrm{W})\) ，output \(\left(\mathrm{N}, \mathrm{C}, \mathrm{H}_{\text {out }}, \mathrm{W}_{\text {out }}\right)\) and kernel＿size \((\mathrm{kH}, \mathrm{kW})\) can be precisely described as：
\[
\begin{aligned}
\operatorname{out}\left(\mathrm{N}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}, \mathrm{~h}, \mathrm{w}\right)= & \max _{\mathrm{m}=0, \ldots, \mathrm{kH}-1 \mathrm{n}=0, \ldots, \mathrm{~kW}-1}^{\max } \\
& \operatorname{input}\left(\mathrm{N}_{\mathrm{i}}, \mathrm{C}_{\mathrm{j}}, \operatorname{stride}[0] \times \mathrm{h}+\mathrm{m}, \text { stride }[1] \times \mathrm{w}+\mathrm{n}\right)
\end{aligned}
\]

\section*{Parameters}
－kernel＿size－the size of the window to take a max over
－stride－the stride of the window．Default value is kernel＿size
－padding－implicit zero padding to be added on both sides
－dilation－a parameter that controls the stride of elements in the window
－return＿indices－if True，will return the max indices along with the outputs．Useful for torch．nn．MaxUnpool2d later
－ceil＿mode－when True，will use ceil instead of floor to compute the output shape

\section*{Pooling Layer in PyTorch}
```


pool of square window of size=3, stride=2

m = torch.nn.MaxPool2d(3, stride=2)
output = m(rand_input)
print(output.shape)
torch.Size([20, 16, 24, 49])

pool of non-square window

m = torch.nn.MaxPool2d((3, 2), stride=(2, 1))
output = m(rand_input)
print(output.shape)
torch.Size([20, 16, 24, 99])

```

\section*{Pooling Layer in TensorFlow}
```

tf.keras.layers.MaxPool2D(
pool_size=(2, 2), strides=None, padding='valid', data_format=None, **kwargs
)

```
\begin{tabular}{ll} 
Arguments & \begin{tabular}{l} 
integer or tuple of 2 integers，window size over which to take the maximum．（ \(2, ~ 2) ~ w i l l ~ t a k e ~ t h e ~\) \\
max value over a \(2 \times 2\) pooling window．If only one integer is specified，the same window length will be \\
used for both dimensions．
\end{tabular} \\
\hline pool＿size & \begin{tabular}{l} 
Integer，tuple of 2 integers，or None．Strides values．Specifies how far the pooling window moves for \\
each pooling step．If None，it will default to pool＿size．
\end{tabular} \\
\hline strides & \begin{tabular}{l} 
One of＂valid＂or＂same＂（case－insensitive）．＂valid＂adds no zero padding．＂same＂adds padding \\
such that if the stride is 1，the output shape is the same as input shape．
\end{tabular} \\
\hline padding & \begin{tabular}{l} 
A string，one of channels＿last（default）or channels＿first．The ordering of the dimensions in \\
the inputs．channels＿last corresponds to inputs with shape（batch，height，width， \\
channels）while channels＿first corresponds to inputs with shape（batch，channels， \\
height，width）．It defaults to the image＿data＿format value found in your Keras config file at \\
\(\sim / . k e r a s / k e r a s . j s o n . ~ I f ~ y o u ~ n e v e r ~ s e t ~ i t, ~ t h e n ~ i t ~ w i l l ~ b e ~ " c h a n n e l s \_l a s t " . ~\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Pooling Layer in TensorFlow}
```


pool of square window of size=3, strides=2

m = tf.keras.layers.MaxPooling2D(3, strides=2)
output = m(rand_input)
print(output.shape)
(20, 24, 49, 16)

pool of non-square window

m = tf.keras.layers.MaxPooling2D((3, 2), strides=(2, 1))
output = m(rand_input)
print(output.shape)
(20, 24, 99, 16)

```

\section*{CNN Architecture}

\section*{A typical CNN consists of four basic modules：}
－CONV layer will compute the output of neurons that are connected to local regions in the input．
－RELU layer will apply an elementwise activation function．
－FC（i．e．fully－connected）layer will
 compute the class scores．
－POOL layer will perform a downsampling operation along the spatial dimensions（width，height）．

\section*{CNN Architecture}


\section*{CNN Architecture}
－We can also use global average pooling（GAP）to replace flattening．

（i）厦門大學信夏学院（特色化示范性软件学院）


\section*{CNN Architecture}
－The most common form of a CNN architecture：
－stacks a few CONV－RELU layers；
－follows them with POOL layers；
－repeats this pattern until the image has been merged spatially to a small size；
－transits to fully－connected layers to produce output（e．g．class scores）．
－The most common CNN architecture follows the pattern：
INPUT -> [[CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC
－The＊indicates repetition，and the indicates an optional pooling layer．
－ \(\mathrm{N}>=0\)（and usually \(\mathrm{N}<=3\) ），， \(\mathrm{K}>=0\)（and usually \(\mathrm{K}<3\) ）．

\section*{CNN Architecture}
－INPUT－＞FC．
－A simple linear classifier．Here \(N=M=K=0\) ．
－INPUT－＞CONV－＞RELU－＞FC．
－Only CONV layer and RELU layer are used．
－INPUT－＞［CONV－＞RELU－＞POOL］＊2－＞FC－＞RELU－＞FC．
－There is a single CONV layer between every POOL layer．
－INPUT－＞［CONV－＞RELU－＞CONV－＞RELU－＞POOL］＊3－＞［FC－＞RELU］＊2－＞FC．
－Two CONV layers stacked before every POOL layer．
－This is generally a good idea for larger and deeper networks，because multiple stacked CONV layers can develop more complex features of the input volume before the destructive pooling operation．

\section*{Filter Size}

Is a stack of three \(3 \times 3\) CONV layers equivalent to a single \(7 \times 7\) CONV layer？
－No．There are several disadvantages for using filters with large size：
－Less powerful：the neurons would be computing a linear function over the input， while the three stacks of CONV layers contain non－linearities that make their features more expressive．
－More parameters：if both the input and output of a layer have depth \(C, 7 \times 7\) CONV layer would contain \(C \times(7 \times 7 \times C)=49 C^{2}\) ，while the three \(3 \times 3\) CONV layers only contains \(3 \times C \times(3 \times 3 \times C)=27 C^{2}\) ．
－Intuitively，stacking CONV layers with tiny filters as opposed to having one CONV layer with big filters allows us to express more powerful features of the input，and with fewer parameters．

\section*{Layer Sizing Patterns}

The common rules of thumb for sizing the architectures：
－The INPUT layer（that contains the image）should be divisible by 2 many times．
－E．g． 32 （e．g．CIFAR－10），64， 96 （e．g．STL－10），or 224 （e．g．common ImageNet ConvNets），384，and 512.
－The CONV layers should be
－using small filters（e．g． \(3 \times 3\) or at most \(5 \times 5\) ），
－using a stride of \(1 \times 1\) ，
－padding the input volume with zeros in such way that the conv layer does not alter the spatial dimensions of the input．

\section*{Layer Sizing Patterns}
－The pool layers are in charge of downsampling the spatial dimensions of the input．
－The most common setting is to use max－pooling with \(2 \times 2\) receptive fields， and with a stride of \(2 \times 2\) ．
－Note that this discards exactly \(75 \%\) of the activations in an input volume（due to downsampling by 2 in both width and height）．
－Another slightly less common setting is to use \(3 \times 3\) receptive fields with a stride of 2.
－It is very uncommon to see receptive field sizes for max pooling that are larger than 3 because the pooling is then too lossy and aggressive．This usually leads to worse performance．

\section*{Classical CNN Architectures}


\section*{Architecture of LeNet－5}

\section*{Classical CNN Architectures}


\section*{Architecture of AlexNet}

\section*{Conclusion}

After this lecture，you should know：
－What is convolution and filter．
－What are the commonly used layers in CNN．
－How to calculate the output size of after a convolutional layer．
－Why do we need pooling．
－What are the typical CNN architectures．

\section*{Suggested Reading}
－Deep learning textbook chapter 9.
－cs231n CNN tutorial
－Conv Nets：A Modular Perspective
－Understanding Convolutions

\section*{Thank you！}
－Any question？
－Don＇t hesitate to send email to me for asking questions and discussion．：）```

